TEMPERATURE DISTRIBUTION IN LAMINAR FLOW OF
AN INCOMPRESSIBLE FLUID, FLOWING IN A RECTANGULAR
CHANNEL WITH BOUNDARY CONDITIONS OF THE SECOND KIND
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The distribution of temperature across the channel has heen obtained for laminar flow of a
fluid in an infinite rectangular channel, in the case when the heat flux to the walls is a func-
tion of the coordinates.

For the case of a fluid in a rectangular channel, the differential equations of motion and energy can
be written, respectively, in the following form:
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Equations (1) and (2) have been obtained with the following assumptions:

1) Stationary flow of an incompressible fluid with constant physical properties, independent of tem-
perature, is considered downstream of the section where the heat flux and the temperature became stabil-
ized.

2) The fluid flow is laminar, the velocity components Wy = Wy = 0, and P = const across the channel.

3) No account is taken of the effect of mass forces, the generation of frictional heating, and heat con-
duction of the walls.

In this formulation, the solution was given in [1] for the temperature distribution in a rectangular
channel, for the case of constant heat flux to the wall. Temperature distributions were obtained, both for
the case of heating from all sides, and for heating from two opposite sides. Siegel and Savino [6] considered the
problem of temperature distribution in a rectangular channel with constant heat flux to the walls, allowing
for heat conduction of the walls.

In the present paper the temperature distribution across the channel section has been obtained when
the heat flux to the walls is a function of the coordinates x or y, but does not vary along the stream, with z.
For simplicity, the case considered is that of symmetrical heating, i.e., the heat flux to opposite walls of
the channel is given as the same function of the coordinates.

The boundary conditions for this problem can be written in the form (Fig. 1):
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In accordance with assumptions (1), Eqs. (5) and (6) can be solved independently. The solution of Eq.
(5), satisfying conditions (7) and (8), has been given in [5], and has the following form:
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Since, in conditions of stabilized flow with constant physical properties, the local fluid temperature
varies linearly along the channel (2], i.e., 8t/ 9z = const, Eq. (6) can be written in the following form:
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To solve Eq. (10), with boundary conditions (7) and (8), we use a finite integral Fourier cosine trans~-
formation with respect to X, considered in detail in [{3]. By multiplying both sides of Eq. (10) by cos kXdX,
and integrating from 0 fo 7, we obtain:
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Fig. 1. The calculation scheme .
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The boundary conditions can be written in the following form:
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Solving the differential equations (11)-(13), we obtain [4]:
1) k 20, k even
T=C1exp(k%Y)+Czexp(—k%Y>—|—F(Y), (16)

where
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£(Y) is the particular solution of the equation
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The constants Cy, C,, C3, Cy, and Cy; are determined from the boundary conditions (14) and (15).
The constant Cy4 can be determined by assuming, for example, that t = 0 when X =Y = 0. The final ex-
pression for the temperature field across the channel can be written in the following form:
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If, for example, a heat flux of constant value q; = const is given on all the channel walls, the ex-
pression for the temperature field across the channel has the form
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Fig. 2. Temperature distribution at the wall (Y = 0) for a
sinusoidal (a) and a parabolic (b) distribution of heat
flux:
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and the value of C;j obtained from the conditiont = 0 for X =Y = 0 is equal to
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In the case when the heat flux to two opposite walls is a sinusoidally varying quantity, i.e.,
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we can obtain the following expression for the temperature field across the channel:

w / b b
; 1 ClL B b2 e 1 v , 2 ch (pYT——pn:%—)
=n 10+ =z " 2 ra + B iy

o 2 . _PTID
pieh 2a

p=1,3,... p=1,3,...

b Y2 2 . b
—= o it C'exp(kTY)

k=2,4,...



b
- ch (pY——pn —)
, 2
s Cexp( =kl v+ B e e Lyl 2 ek, (26)
p=13,... ch =5~ (P*—
where
, g a 2 1
B =1 —— — )
A b o= - oth pab
2a 1
A
p=1,3,... a

and the constants Ci'o, Ci', C; can easily be determined from the boundary conditions.

Figure 2a shows curves of temperature at the wall (Y = 0), obtained from Eq. (26) with a sinusoidal
heat flux distribution on two opposite walls, for channels with various ratios of sides, and Fig. 2b gives
curves of temperature distribution at the wall (Y = 0) for the case when the heat flux is parabolic on two
opposite walls,
xiq?

at’

q =X =g

as a function of the ratio ofsides (ix =y =¢=0).

Since the expressions for the temperature and velocity fields are infinite series, the first few terms
are used to calculate according to the corresponding formulas, depending on the convergence of the respec-
tive series. For example, using Eq. (9), it is enough to take only the first two terms of the series (p =1,

p = 3), since the coefficient of the third term (p = 5) is less than 0.01 of the coefficient of the first term of
the series.

NOTATION
Wy is the stream velocity;
X,y are the coordinates perpendicular to the stream direction;
Z is the coordinate along the stream;
A is the thermal conductivity of the fluid;
i is the thermal diffusivity of the fluid;
1 is the viscosity of the fluid;
P is the pressure;
t is the temperature;
a,b are the channel width and height;

d¢-dy, 93  are the specific heat fluxes to the wall.
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